ENDAT-4946i/M

User's Manual

Rev. A1

4946i/M PCB ver: A2 or later

2007/10/17

Copyright Notice

The content of this manual has been checked for accuracy. The manufacturer assumes no responsibility for any inaccuracies that may be contained in this manual. *The manufacturer reserves the right to make improvements or modification to this document and/or the product at any time without prior notice.* No part of this document may be reproduced, transmitted, photocopied or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical or chemical, without the prior written permission of the manufacturer.

Intel® Core[™] Solo, Core[™] Duo and Core[™]2 Duo mobile processor is registered trademark of Intel Incorporation

Multiscan is a trademark of Sony Corp of America

IBM, EGA, VGA, PC/XT, PC/AT, OS/2 and PS/2 are registered trademarks of International Business Machines Corporation

Plug and Play is registered trademarks of Intel Corporation

Microsoft, Windows and MS-DOS are trademarks of Microsoft Corporation

Award is a trademark of Phoenix Software Inc.

PCI is a registered trademark of PCI Special Interest Group

Other product names mentioned herein are used for identification purpose only and may be trademarks and/or registered trademarks of their respective companies.

Installation Notice

The manufacturer recommends using a grounded plug to ensure proper motherboard operation. Care should be used in proper conjunction with a grounded power receptacle to avoid possible electrical shock. All integrated circuits on this motherboard are sensitive to static electricity. To avoid damaging components from electrostatic discharge, please do not remove the board from the anti-static packing before discharging any static electricity to your body, by wearing a wrist-grounding strap. The manufacturer is not responsible for any damage to the motherboard due to improper operation.

Π

IV

Specification:

Model	ENDAT-4946i/M		
Form Factor	Mini-ITX 170 mm x 170 mm (6.69"x6.69")		
System Chipset	INTEL® 945GM + INTEL® ICH7		
	ENDAT-4946M: 533/667 FSB with 478 pin Intel® Celeron® M 423		
CPU Supporting	processor		
	CoreTM Duo and Intel® CoreTM2 Duo processor		
Momony	1 x 240 pip DDP2 socket supports DDP2 522/667 up to 2CP		
Ethernet	Realter 8111B PCIE Gigabit LAN		
VGA	INTEL® GMA950 Graphic Controller with DVMT up to 224MB(max)		
LCD Interface	Onboard LVDS support 18/24/36/48bit Single/Dual Channels via internal box header (optional)		
DVI Interface	Onboard DVI output via internal pin header (optional)		
Display ratio	4:3 and 16:9		
Serial / Parallel	4 Serial Port w/+5V, +12V Power Selector / 1 Parallel port		
Watchdog Timer	Winbond 83627THG on-chip support 1 to 255 seconds/minutes		
IDE Connector	1 x 40pin IDE connector support UDMA 33/66/100		
SATA Connector	2 ports 300MHz Serial ATA Device		
AUDIO	On-board AC'97 with 1.2W amplifier		
Expansion Slot	One PCI slot with PCI 2.2 compliance		
	PS/2 Keyboard / Mouse Connector		
	2 x USB (2.0) + RJ-45 Connector w/LED indicator		
	D-sub Connector for COM 1, 2, 3 with POWER		
I/O Port	1 x 25 Pins D-Sub Connector (LPT)		
	1 D-Sub Connector (VGA)		
	Internal pin header: KB, MS, USB (2.0) x4, AUX/CD-IN, SPDIF IN/OUT, RF MIC IN, IR		
Digital IO	8 bit input and 8 bit output (TTL level) by pin header		
RS-422/485	Via COM2 (Optional)		
USB Port	6 x USB2.0 onboard		
Power Supply	ATX power supply		

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	1
1-1. FEATURES	2
1-2. UNPACKING	
1-3. ELECTROSTATIC DISCHARGE PRECAUTIONS	
1-4. MOTHERBOARD LAYOUT	4
CHAPTER 2. SETTING UP THE MOTHERBOARD	5
2-1. JUMPERS AND CONNECTORS	
2-2. INSTALLING MEMORY	15
2-3. SHARED VGA MEMORY	15
2-4. ASSIGNING IRQs FOR EXPANSION CARDS	15
2-5. WATCHDOG TIMER	16
2-6. DIGITAL I/O	18
CHAPTER 3. AWARD BIOS SETUP	20

CHAPTER 3. AWARD BIOS SETUP	
3-1. STANDARD CMOS FEATURES	
3-2. ADVANCED BIOS FEATURES	
3-3. ADVANCED CHIPSET FEATURES	
3-4. INTEGRATED PERIPHERALS	
3-5. POWER MANAGEMENT SETUP	30
3-6. PnP/PCI CONFIGURATIONS	
3-7. PC HEALTH STATUS	

CHPATER 4. VGA, LCD, FEATURE	
4-1. VGA FEATURE	
4-2. LVDS PANEL FEATURE	35
4-3. DRIVER UTILITY INSTALLATION GUIDE	36
APPENDIX A: FLASH MEMORY UTILITY	
APPENDIX B: CONNECTOR PIN ASSIGNMENT	
APPENDIX C: LIMITED WARRANTY	40

Chapter 1. Introduction

ENDAT-4946i/M supports high performance processor of Intel® Celeron® M 423 (for ENDAT-4946M), Intel® Core[™] Solo, Intel® Core[™] Duo and Intel® Core[™] 2 Duo processor (for ENDAT-4946i) with 533 and 667 Front Side Bus. It also supports high speed DDR-2 memory with 64-bit wide interfaces with non-ECC DIMM (up to 2GB). Only Double-Data-Rate Two Synchronous Dynamic Random Access Memory is supported and the speed of memory can be 533 and 667 MHz.

ENDAT-4946i/M provides an integrated graphics (Intel® Graphics Media Accelerator 950) accelerator delivering cost competitive 3D, 2D, and video capabilities.

ENDAT-4946i/M video engines support video conferencing and other video applications. Instead of a dedicated local graphics memory interface, ENDAT-4946i/M uses a UMA configuration for optimal memory utilization and performance that deliver 3D graphics with sharp images, fast rendering, smooth motion and extreme detail.

ENDAT-4946i/M contains one integrated Serial ATA host controllers capable of independent DMA operation on two ports. The SATA controllers are completely software transparent with the IDE interface, while providing a lower pin count and higher performance. The data transfer rate is up to 300 MB/s.

ENDAT-4946i/M is an ideal model for various kind of application:

- POS system
- KIOSK
- Interactive system
- Airport Terminal Controller
- Industrial controller
- Digital entertainment
- Embedded system equipment

1-1. Features

Basic Feature:

- Board format: Mini-ITX (170mm x 170 mm)
- Supports Socket 478 CPU (FSB 400/533/667 MHz)
- Digital I/O: 8 bits in and 8 bits out (5V)
- Supports DDR-2 533/667 SDRAM up to 2GB
- Serial ATA connector x 2
- Enhance IDE connector x 1
- Multiple I/O ports: COM port x 4; USB (2.0) x 6
- All COM ports with +5V, +12V power selector
- Watchdog Timer
- Realtek Gigabit LAN and Audio function onboard

Optional features:

- On board chip provides LVDS interface (18/24/36/48 bit, single/dual channels)
- DVI Output interface
- RS 422/485 via COM 2
- Barebones system: niche into Unicorn U-6000 & U-8000 Chassis

Full Software Support:

 Drivers for major operating systems and APIs: Windows 2000, Windows XP, Direct3D, DirectDraw and DirectShow, OpenGL ICD and DXVA for Windows 2000 and Windows XP

3

2-1. Unpacking

The motherboard comes securely packaged in a sturdy cardboard shipping carton. In addition to the User's Manual, the motherboard package includes the following items:

ENDAT-4946i/M System Board

HDD / IO Cables

LCD cable (Optional)

CDROM Driver includes: Drivers for Windows 2000, XP and AMI / AWARD FLASH ROM utilities.

Driver utilities for on-board VGA drivers, LAN adapter

If any of these items are missing or damage, please contact the dealer from whom you purchase the motherboard. Save the shipping material and carton in the event that you want to ship or store the board in the future.

Note: Please leave the motherboard in its original package until you are ready to install it!

1-3. Electrostatic Discharge Precautions

Make sure you properly ground yourself before handling the motherboard, or other system components. Electrostatic discharge can easily damage the components. Note: You must take special precaution when handling the motherboard in dry or air-conditioned environments.

1-4. Motherboard Layout

Chapter 2. Setting up the Motherboard

2-1. Jumpers And Connectors

Jumpers/Connectors Overview:

Function	Jumpers/Connectors	
Cooling Fan Connector	FAN1, FAN2	
ATX Power Supply Connector	ATXPWR	
DVI Output Pin Header	DVI1, DVI2	
LCD Panel Connector	LVDS1	
LCD Voltage Selector	JP2	
Clear CMOS	JBAT1	
PS/2 Mouse/KB Pin Header	J1	
PS/2 Mouse/KB	CN1	
USB Port	CN8, J8, J9	
40-Pin IDE Connector	IDE1	
SATA 1, SATA2	SATA 1, SATA2	
Header for Case Panel	JP6	
HDD LED	JP6: Pin 1(-), Pin 2(+)	
External Speaker	JP6: Pin 3(-), Pin 6(+)	
Buzzer On/Off	JP6: Pin 4, Pin 5	
Hardware Reset Switch	JP6: Pin 7, Pin 8	
ATX Power Supply On/Off Switch	JP6: Pin 9, Pin 10	
Power LED	JP6: Pin 11(-), Pin 12(+)	
WDT Function Enable/Disable	JP6: Pin 13, Pin 14	
External Power Good	JP6: Pin 15, Pin 16	
Internal Power Good	JP6: Pin 16, Pin 17	
DDR2 RAM Socket	DIMM1	
CRT Output	CN4	
IR Pin Header	J3	
COM1/2/3/4 Voltage Selector	JP5	
COM1 Connector	CN2	
COM2 & COM3 Connector	CN5	
LPT1	CN3	
LAN Connector	CN8	
AC'97 Speaker Output	CN9	
AC'97' Speaker Output, MIC-In Pin Header	J5	

Function	Jumpers/Connectors
5.1Ch Speaker output Pin Header	J6
Line-In, CD-In Pin Header	J7
COM2 Box Header	CN7
COM4 Box Header	CN6
RS232 / 422 / 485 Selector for COM2	JP3, JP4
DIGITAL I/O Pin Header	J2
SPDIF Pin Header	J10

Please double-check the insertion and orientation of the LCD cable before applying power. Improper installation will result in permanent damage LCD panel.

Part 1: Onboard Jumpers

JP2: LCD Voltage Selector (2.0mm)

LCD power	JP2 (2.54mm)	
Pin-1, 2*	+3.3V	
Pin-3, 4	+5V	
Pin-5, 6	+12V	

Caution: Improper setting will damage LCD panel.

JP3, JP4: RS232 / 422 / 485 Selector for COM2 (2.0mm)

TYPE	JP3 (3x4/2mm)	JP4 (2x3/2mm)
RS-232 *	1-2, 4-5, 7-8, 10-11	1-2
RS-422	2-3, 5-6, 8-9, 11-12	3-4
RS-485	2-3, 5-6, 8-9, 11-12	5-6

JP5: COM1/2/3/4 Voltage Selector (2.0mm)

Voltage	COM1	COM2	COM3	COM4
+12V	1-2	7-8	13-14	19-20
R.I*	3-4	9-10	15-16	21-22
+5V	5-6	11-12	17-18	23-24

6

JP6: Header for Case Panel (2.54mm)

Pin No.	Function		
1(-), 2(+)	IDE LED		
3(-), 6(+)	External Speaker		
4,5	Buzzer On/Off		
7,8	Hardware Reset Switch		
9,10	ATX Power On/Off		
11(-), 12(+)	Power LED		
13,14	Close: Enable WDT function		
15,16	External Power Good		
16.17	Internal Power Good(Default)		

Part 2: Onboard Connectors

J1: PS/2 Keyboard / Mouse Pin Header Connector (2.54mm)

Pin No.	Signal (KB)	Pin No.	Signal (MS)
1	KB Data	2	MS Data
3	KEY	4	KEY
5	GND	6	GND
7	+5V(DC)	8	+5V(DC)
9	KB_CLK	10	MS_CLK

J2: Digital I/O Pin Header (2.54mm)

Pin No.	Function	Pin No.	Function
1	+5V	2	+5V
3	DIO-O0	4	DIO-I0
5	DIO-O1	6	DIO-I1
7	DIO-O2	8	DIO-I2
9	DIO-O3	10	DIO-I3
11	DIO-O4	12	DIO-I4
13	DIO-O5	14	DIO-I5
15	GND	16	GND
17	DIO-O6	18	DIO-I6
19	DIO-O7	20	DIO-I7
21	+3.3V	22	+3.3V

J3: IR Pin Header (2.54mm)

Pin No.	Function	Pin No.	Function
1	VCC	4	GND
2	N.C	5	IRTX
3	IRRX		

J5: AC'97 Speaker Output, MIC-In Pin Header (2.54mm)

Pin No.	Function	Pin No.	Function
1	Speaker Output-RIGHT	2	Alternative LFE-Output
3	GND	4	GND
5	GND	6	GND
7	Speaker Output-LEFT	8	First MIC Input/CEN-Output

J6: 5.1Ch Speaker output Pin Header (2.54mm)

Pin No.	Function	Pin No.	Function
1	Surround Output - LEFT	2	Center Output
3	GND	4	GND
5	GND	6	GND
7	Surround Output - RIGHT	8	Low Frequency Effect Output

J7: Line-In, CD-In Pin Header (2.54mm)

Pin No.	Function	Pin No.	Function
1	Line Input – RIGHT	2	CD Input – RIGHT
3	GND	4	GND
5	GND	6	GND
7	Line Input – LEFT	8	CD Input – LEFT

J8, J9: USB Port Pin Header (2.54mm)

Pin No.	Function	Pin No.	Function
1	USB_VCC	2	USB_VCC
3	USBD 2/4-	4	USBD 3/5-
5	USBD 2/4+	6	USBD 3/5+
7	USB_GND	8	USB_GND
9	USB_GND	10	USB_GND

8

J10: SPDIF Pin Header (2.54mm)

Pin No.	Function	Pin No.	Function
1	+5V	4	GND
2	KEY	5	SPDIF-IN
3	SPDIF-OUT		

ATXPWR: ATX Power Supply Connector (3.96mm)

Pin No.	Function	Pin No.	Function
1	+3.3V	2	+3.3V
3	+3.3V	4	-12V
5	GND	6	GND
7	+5V	8	PS-ON
9	GND	10	GND
11	+5V	12	GND
13	GND	14	GND
15	POWER OK	16	-5V
17	5V_SB	18	+5V
19	+12V	20	+5V

FAN1, FAN2: Cooling Fan Connector

Pin No.	Function
1	Sensor Pin.
2	+12V
3	GND

CN3: Printer (LPT1) Connector

Pin No.	Description	Pin No.	Description
1	STB#	10	ACK#
2	PD0	11	BUSY
3	PD1	12	PE
4	PD2	13	SLCT
5	PD3	14	AFD#
6	PD4	15	ERR#
7	PD5	16	INIT#
8	PD6	17	SLIN#
9	PD7	18-25	GND

10

9

CN4: CRT Connector

Pin No.	Description	Pin No.	Description
1	RED	9	n/c / +5V
2	GREEN	10	GND
3	BLUE	11	n/c
4	n/c	12	DDC DAT
5	GND	13	H-Sync
6	GND	14	V-Sync
7	GND	15	DDC CLK
8	GND		

CN6: COM4 Pin Header (RS-232)

Pin No.	Function	Pin No.	Function
1	DCD	6	DSR
2	RXD	7	RTS
3	TXD	8	CTS
4	DTR	9	RI
5	GND	10	n/c

D-SUB Type Connector for COM2 port (RS-422→ 4 Wire)

Pin No.	Function	Pin No.	Function
1	-TXD	6	NA
2	+RXD	7	NA
3	+TXD	8	NA
4	NA	9	-RXD
5	NA		

D-SUB Type Connector for COM2 port (RS-485→ 2 Wire)

Pin No.	Function	Pin No.	Function	
1	Data –	6	NA	
2	NA	7	NA	
3	Data +	8	NA	
4	NA	9	NA	
5	NA			

D-SUB Type Connector for COM port (RS-232)

Pin No.	Description	Pin No.	Description
1	DCD	6	DSR
2	RXD	7	RTS
3	TXD	8	CTS
4	DTR	9	RI
5	GND		

DVI1: DVI-DIGITAL Output Pin Header (2.0mm)

Pin No.	Function	Pin No.	Function		
1	TD2-	2	+5V		
3	TD2+	4 KEY			
5	EDID DATA	DID DATA 6 HPD			
7	EDID CLOCK	8	TD0-		
9	TD1-	10	TD0+		
11	TD1	12	LVDS_GND		
13	TLC-	14	TLC+		

DVI2: DVI-ANALOG Output Pin Header (2.0mm)

Pin No.	Function	Pin No.	Function
1	CRT_RED	2	VGAVSYNC
3	CRT_GREEN	4	GND_CRT
5	CRT_BLUE	6	VGAHSYNC
7	n/c	8	CRT-Pin-6

Pin No.	Description	Pin No.	Description	
2,19,22	GND	13	IDE data2	
24.26.30	GND	14	IDE data13	
40	GND	15	IDE data1	
20,21,28	n/c	16	IDE data14	
29,32,34	n/c	17	IDE data0	
1	IDE reset	18	IDE data15	
3	IDE data7	23	IDE Write	
4	IDE data8	25	IDE Read	
5	IDE data6	27	IDE Ready	
6	IDE data9	31	IDE IRQ	
7	IDE data5	33	IDE A1	
8	IDE data10	35	IDE A0	
9	IDE data4	36	IDE A2	
10	IDE data11	37	IDECS1#	
11	IDE data3	38	IDESC3#	
12	IDE data12	39	HDLED0#	

12

Pin No.	Signal	Pin No.	Signal
1	VBL (+12V)	2	VBL (+12V)
3	GND	4	GND
5	DISP.ON/OFF	6	GND
7	LVDD	8	LVDD
9	GND	10	GND
11	RxO0+	12	RxO0-
13	RxO1+	14	RxO1-
15	RxO2+	16	RxO2-
17	RxO3+	18	RxO3-
19	RxOC+	20	RxOC-
21	GND	22	KEY
23	RxE0+	24	RxE0-
25	RxE1+	26	RxE1-
27	RxE2+	28	RxE2-
29	RxE3+	30	RxE3-
31	RxEC+	32	RxEC-
33	LVDD	34	LVDD
35	GND	36	GND
37	GND	38	GND
39	VBL (+12V)	40	VBL (+12V)

Please make sure the Pin 1 location before inserting the LCD connector.

LVDS1: Single Channel of LVDS I/F (2.0mm)

Pin No.	Signal	Pin No.	Signal	
1	VBL (+12V)	2	VBL (+12V)	
3	GND	4	GND	
5	DISP.ON/OFF	6	GND	
7	LVDD	8	LVDD	
9	GND	10	GND	
11	Rx0+	12	Rx0-	
13	Rx1+	14	Rx1-	
15	Rx2+	16	Rx2-	
17	Rx3+	18	Rx3-	
19	RxCLK+	20	TxCLK-	
21	GND	22	KEY	
23	n/c	24	n/c	
25	n/c	26	n/c	
27	n/c	28	n/c	
29	n/c	30	n/c	
31	n/c	32	n/c	
33	LVDD	34	LVDD	
35	GND	36	GND	
37	GND	38	GND	
39	VBL (+12V)	40	VBL (+12V)	

Please make sure the Pin 1 location before inserting the LCD connector.

LCD Panel Number:

Panel Number
1024x768 24Bit 1CH
1280x1024 48Bit 2CH
1280x768 24Bit 1CH
1366x768 24Bit 1CH

14

15

2-2. Installing Memory

ENDAT-4946i/M system board offers one 240pin DDR-2 SDRAM socket supports up to 2GB memory and the speed can be 533 / 667 MHz.

2-3. Shared VGA Memory

ENDAT-4946i/M is using built-in INTEL® GMA950 Graphic with INTEL DVMT 3.0 **up to 224MB** of system memory. The amount of video memory on motherboard determines the number of colors and the video graphic resolution.

2-4. Assigning IRQs for Expansion Cards

Some expansion cards require an IRQ (Interrupt request vector) to operate. Generally, each IRQ must be exclusively assigned to specific use. In a standard design, there are 16 IRQ available with 11 of them already in used by other part of the system.

Some PCI expansion cards need IRQ; any remaining IRQ could be assigned to PCI Bus. Microsoft's Diagnostic (MSD.EXE) utility included in the Windows directory can be used to see their map. Clients can not have more than one device apply the same IRQ in the system or it will cause the system hang up, crash, and unexpected results. To simplify the process, this motherboard complies with the Plug and Play (PnP) specifications, which was developed to allow automatic system configuration. Whenever a PnP-compliant card is added to the system, PnP card and IRQs will automatically assigned if available. The PCI and PnP configuration in the BIOS setup utility can indicate which IRQs have being used by Legacy cards.

In the PCI Bus design, the BIOS is automatically assigned an IRQ to a PCI slot that has a card in it which requires an IRQ. To install PCI cards via riser card, you need to set the correct "ADSEL" and "INT" (interrupt) assignment on the jumper of riser card.

IRQ	Status	Assignment
0	Used	Timer
1	Used	Keyboard
2	Used	Second 8259
3	Used	COM2
4	Used	COM1
5	Used	COM3
6	Used	Floppy Disk
7	Used	LPT1
8	Used	RTC
9	Used	Audio
10	Used	COM4
11	Used	LAN Adapter (on board)
12	Used	PS/2 Mouse
13	Used	Coprocessor
14	Used	Hard Disk (IDE 1)
15	Used	Reserved (IDE 2)

2-5. Watchdog Timer

Watchdog Timer (WDT) is a special design for system monitoring to secure the system work normally. WDT has an independent clock from the oscillator and could set time and clear/refresh WDT counter function. When time is up, WDT will send hardware RESET signal to reset system.

Timeout Value Range

-1 to 255 -Second or Minute

```
Program Sample
#include <stdio.h>
#include <dos.h>
#include <dir.h>
void show_ver();
void main()
      unsigned int tt;
      clrscr();
      show_ver();
      tt=0:
      while((tt==0)||(tt>255))
           printf("\n\nPlease key in how many seconds you want to reset system
(1~255):");
           scanf("%d",&tt);
      outportb(0x2e,0x87); //Unlock register
      outportb(0x2e,0x87); //Unlock register
      outportb(0x2e,0x07); //Set Logic Device number pointer
     outportb(0x2f,0x08); //Set Logic Device number
      outportb(0x2e.0xf5): //Set active register is CRF5
     outportb(0x2f,0x00); //Set register value (bit3=1: minute. =0: second)
     outportb(0x2e,0xf7); //Set active register is CRF7
     outportb(0x2f,0x00); //Disable all WDT interrupt (bit7=Mouse,
bit6=Kevboard)
      outportb(0x2e,0xf6); //Set active register is CRF6
     outportb(0x2f,tt); //Set time out value of WDT
}
void show_ver()
      unsigned char tmp0;
      printf("Designed by ROBERT LIOU of UNICORN computer corp.
n2004/03/02 release version:1.0a/n"):
      printf("This program is design for test Watchdog Timer for W83627.\n");
```

2-6. Digital I/O

18

1) Pin out of digital I/O header (J2):

Pin No.	Function	Pin No.	Function	
1	+5V	2	+5V	
3	DIO-O0	4	DIO-I0	
5	DIO-O1	6	DIO-I1	
7	DIO-O2	8 DIO-I2		
9	DIO-O3	10	DIO-I3	
11	DIO-O4	12	DIO-I4	
13	DIO-O5	14	DIO-I5	
15	GND	16	GND	
17	DIO-O6	18	DIO-I6	
19	DIO-O7	20	DIO-I7	
21	+3.3V	22	+3.3V	

This function is supported by onboard super I/O chip; it can be control easily by change the register of super I/O chip via I/O port "2Eh" "2Fh" and "4Eh" "4Fh". Please see the sample code of below for implement. Voltage tolerance: +/- 5% with 0V to +5V.

2) Digital I/O control port (2E,2Fh):

Register configuration:

Bit No	7	6	5	4	3	2	1	0
Мар	IN3	IN2	OUT3	OUT2	OUT1	OUT0	IN1	IN0

Sample code for input bit 0~3 (using Turbo C/C++ 3.0):

#define input_port 0x2f
outportb(0x2e,0x87); //Unlock register
outportb(0x2e,0x87); //Unlock register
outportb(0x2e,0x07); //Set Logic Device number pointer
outportb(0x2f,0x07); //Set Logic Device number
outportb(0x2e,0xF1); //Set active register is CRF1
read_data=inportb(input_port); // Read digital input data
printf("DIO-Input=%02X\n",read_data); //Show digital input data on screen

19

Sample code for output bit 0~3 (using Turbo C/C++ 3.0):

outportb(0x2e,0x87);	//Unlock register
outportb(0x2e,0x87);	//Unlock register
outportb(0x2e,0x07);	//Set Logic Device number pointer
outportb(0x2f,0x07);	//Set Logic Device number
outportb(0x2e,0xF2);	//Set active register is CRF2
outportb(0x2f,0x00);	//Write data to digital output

3) Digital I/O control port (4E,4Fh):

Register configuration:

Bit No	7	6	5	4	3	2	1	0
Мар	IN7	IN6	OUT7	OUT6	OUT5	OUT4	IN5	IN4

Sample code for input bit 4~7(using Turbo C/C++ 3.0):

#define input_port 0x2	f
outportb(0x4e,0x87);	//Unlock register
outportb(0x4e,0x87);	//Unlock register
outportb(0x4e,0x07);	//Set Logic Device number pointer
outportb(0x4f,0x07);	//Set Logic Device number
outportb(0x4e,0xF1);	//Set active register is CRF1
read_data=inportb(inpu	t_port); // Read digital input data
printf("DIO-Input=%02	2X\n",read_data); //Show digital input data on screen

Sample code for output bit 4~7(using Turbo C/C++ 3.0):

outportb(0x4e,0x87);	//Unlock register
outportb(0x4e,0x87);	//Unlock register
outportb(0x4e,0x07);	//Set Logic Device number pointer
outportb(0x4f,0x07);	//Set Logic Device number
outportb(0x4e,0xF2);	//Set active register is CRF2
outportb(0x4f,0x00);	//Write data to digital output

Chapter 3. AWARD BIOS SETUP

Phoenix – Award BIOS CMOS Setup Utility

> Standard CMOS Features	> PC Health Status
> Advanced BIOS Features	> Load Optimized Defaults
> Advanced Chipset Features	> Set Supervisor Password
> Integrated Peripherals	> Set User Password
> Power Management Setup	> Save & Exit Setup
> PnP/PCI Configurations	> Exit Without Saving

Use the CMOS setup program to modify the system parameters to reflect the environment installed in your system and to customize the system as desired. Press the key to enter into the CMOS setup program when you turn on the power. Settings can be accessed via arrow keys. Press <Enter> to choose an option to configure the system properly.

In the main menu, press F10 or "SAVE & EXIT SETUP" to save your changes and reboot the system. Choose "EXIT WITHOUT SAVING" to ignore the changes and exit the setup procedure. Pressing <ESC> at anywhere during the setup will return to the main menu.

"Advanced BIOS Features", "Advanced Chipset Features" and "PnP/PCI Configurations" requires board knowledge on PC/AT system architecture and Intel chipset specification. They intend to be used by well-trained technicians and experienced users. Press the <F10> key to save CMOS setting to EEPROM, Press <F7> key can load CMOS setting from EEPROM. Incorrect setup could cause system malfunctions.

21

3-1. Standard CMOS Features

The Standard Setup is used for the basic hardware system configuration. The main function is for Data/Time and Hard Disk Drive settings.

Item	Available Options:
Date (mm:dd:yy)	
Time (hh:mm:ss)	
>IDE Channel 0 Master:	Auto
>IDE Channel 0 Slave :	Auto
>IDE Channel 1 Master:	Auto
>IDE Channel 1 Slave :	Auto
Video	EGA/VGA
Halt On	All , But Keyboar

3-2. Advanced BIOS Features

This section allows you configuring your system for basic operation. You have the opportunity to select the system's default speed, boot-up priority, keyboard operation and security.

Item	Available Options:
>CPU Feature	Press Enter
>Hard Disk Boot Priority	Press Enter
Virus Warning	Disabled
CPU L1 & L2 Cache	Enabled
CPU L3 Cache	Enabled
Hyper-Threading Technology	Enabled
Quick Power On Self Test	Enabled
First Boot Device	Hard Disk
Second Boot Device	CDROM
Third Boot Device	LS120
Boot Other Device	Enabled
Boot Up NumLock Status	On
Gate A20 Option	Normal
Typematic Rate Setting	Disabled
Typematic Rate (Chars/Sec)	6
Typematic Delay (Msec)	250
Security Option	Setup
APIC Mode	Enabled
MPS Version Control For OS	1.4
OS Select For DRAM > 64MB	Non-OS2

CPU Feature		
Item	Available Options:	
Delay Prior to Thermal	16 Min	
Execute Disable Bit	Enabled	

Hyper-Threading Technology

Hyper-Threading technology is a technique which enables a single CPU to act like multiple CPU's.

23

APIC Mode

This item can enable or disable the APIC (Advanced Programmable Interrupt Controller). Due to compliance to PC2001 design guide, the system is able to run in APIC mode. Enabling APIC mode will expand available IRQs resources for the system. Leave this field in its default setting.

MPS Version Control For OS

This item allows you selecting which MPS (Multi-Processor Specification) version to be used for the operating system. You need to select the MPS version that is supported by your operating system. To find out which version to use, consult the vendor of your operating system.

3-3. Advanced Chipset Features

This section allows you to configure the system based on the specific features of the installed chipset. This chipset manages bus speeds and the access to the system memory resources, such as DRAM and the external cache. It also coordinates the communications with the PCI bus. It must be stated that these items should never be altered. The default settings have been chosen because they provide the best operating conditions for your system. You might consider making any changes only if you discover that the data has been lost while using your system.

Item	Available Options:
DRAM Timing Selectable	By SPD
System Memory Frequency	Auto
System BIOS Cacheable	Enabled
Video BIOS Cacheable	Enabled
Memory Hole At 15M-16M	Disabled
** VGA Setting **	
PEG/Onchip VGA Control	Onboard VGA
On-Chip Frame Buffer Size	8MB
DVMT Mode	DVMT
DVMT/FIXED Memory Size	128MB
Boot Display	CRT
Panel Number	1024x768 24Bit 1CH

System Memory Frequency

This main board supports different memory frequencies depend on the CPU FSB (Front Side Bus) and the type of DDR DIMM.

CPU FSB	DDR2 DIMM Type	Memory Frequency
667 MHz	PC2-5300/PC2-4200	667/533 MHz
533 MHz	PC2-4200	533 MHz

On-Chip Frame Buffer Size

This selection is supplied for legacy VGA and SVGA graphics support and compatibility.

25

This field is used to select the type of DVMT mode. DVMT (Dynamic Video Memory Technology) is an architecture that offers breakthrough performance for the motherboard through efficient memory utilization.

FIXED	A fixed-size fragment of the system memory is allocated to the graphics core.
DVMT	The graphics driver allocates memory as needed for running graphics applications and is cooperatively using this memory with other system components.
вотн	This mode guarantees that at least 64MB of memory is available to the graphics core, with a possibility to increase this amount to 128MB, if necessary.

Boot Display

This field is used to select the type of display to use when the system boots. EFP means DVI or LCD display by main board.

CRT	Select this option if you want the system to boot the CRT display.
EED	Select this option if you want the system to boot the DVI or LCD
EFP	flat panel display. (Optional Item)
CDT. EED	Select this option if you want the system to boot both of the CRT
CK1+EFP	and DVI or LCD display. (Optional Item)

• Panel Number (Optional Item)

If you apply one of the standard panels shown above, select the appropriate option according to the type of panel that you apply. Or, please contact your dealer or sales representative for custom-made BIOS that will suit the panel that you apply. When main board offers DVI output, this option will not be shown.

Panel Number
1024x768 24Bit 1CH
1280x1024 48Bit 2CH
1280x768 24Bit 1CH
1366x768 24Bit 1CH

3-4. Integrated Peripherals

The IDE hard drive controllers support up to two separate hard drives. These drives have a master/slave relationship that is determined by the cabling configuration used to attach them to the controller. Your system supports two IDE controllers--a primary and a secondary--so you can install up to four separate hard disks.

integrated i empirerais	
Available Options:	
Press Enter	
Press Enter	
Press Enter	
Disabled	
3E8	
IRQ5	
2E8	
IRQ10	

Integrated Peripherals

OnChip IDE Device

Item	Available Options:
IDE HDD Block Mode	Enabled
IDE DMA transfer access	Enabled
On-Chip Primary PCI IDE	Enabled
IDE Primary Master PIO	Auto
IDE Primary Slave PIO	Auto
IDE Primary Master UDMA	Auto
IDE Primary Slave UDMA	Auto
On-Chip Secondary PCI IDE	Enabled
IDE Secondary Master PIO	Auto
IDE Secondary Slave PIO	Auto
IDE Secondary Master UDMA	Auto
IDE Secondary Slave UDMA	Auto
*** On-Chip Serial ATA Setting ***	
On-Chip Serial ATA	Auto
SATA PORT Speed Settings	Disabled
PATA IDE Mode	Secondary
SATA Port	P0,P2 is Primary

Unboard Device	
Item	Available Options:
USB Controller	Enabled
USB 2.0 Controller	Enabled
USB Keyboard Support	Enabled
AC97 Audio Select	Enabled

SuperIO Device

Item	Available Options:
POWER ON Function	Button ONLY
KB Power ON Password	Enter
Hot Key Power ON	Ctrl-F1
Onboard Serial Port 1	3F8/IRQ4
Onboard Serial Port 2	2F8/IRQ3
UART Mode Select	Normal
RxD, TxD Acitve	Hi,Lo
IR Transmission Delay	Enabled
UR2 Duplex Mode	Half
Use IR Pins	IR-Rx2Tx2
Onboard Parallel Port	378/IRQ7
Parallel Port Mode	ECP+EPP
EPP Mode Select	EPP1.7
ECP Mode Use DMA	3
PWRON After PWR-Fail	Off

Onboard LAN Boot ROM

The default setting is enabled or disabled LAN boot up function.

IDE HDD Block Mode

Block mode is also called block transfer, multiple commands, or multiple sectors read/write.

IDE Primary Master/Slave PIO and IDE Secondary Master/Slave PIO

The four IDE PIO (programmed Input/Output) fields let you set a PIO mode (0-4) for each IDE device that the internal PCI IDE interface supports. Modes 0 through 4 provide successively increased performance. In Auto mode, the system automatically determines the best mode for each device.

28

27

IDE Primary Master/Slave UDMA and IDE Secondary Master/Slave UDMA

These fields allow you to set the Ultra DMA in use. When Auto is selected, the BIOS will select the best available option after checking your hard drive or CD-ROM.

On-Chip Serial ATA

Disabled	Disables the onboard SATA.	
Auto	The system will detect the existing SATA and IDE drives then automatically set them to the available master/slave mode.	
Combined Mode	This option allows you to use both IDE and SATA drives; allowing a maximum of 4 drives. You must manually set the SATA drives' master/slave mode in the "Serial ATA Port0 Mode" and "Serial ATA Port1 Mode" fields.	
Enhanced Mode	This option allows you to use both IDE and SATA drives; allowing a maximum of 6 drives.	
SATA Only	This option automatically sets the SATA drives to Primary Master and Secondary Master modes. Since both drives are in master mode, you cannot set the IDE drives to Master mode. The "Serial ATA Port0 Mode" and "Serial ATA Port1 Mode" fields will not be configurable.	

SATA PORT Speed Settings

The SATA PORT Speed Settings option controls the maximum access speed allowed for the connected SATA devices, with the GEN I setting used for SATA-150 type devices and GEN II used for SATA II type devices.

PATA IDE Mode

These fields are used to select the master/slave mode of the serial ATA drives. Make sure they do not conflict with the settings of the IDE hard drives.

USB Controller

Select "Enabled" if your system contains a Universal Serial Bus (USB) controller and you have a USB peripheral.

29

USB 2.0 Controller

The options for this field are Enabled and Disabled. By default, this field is set to Disabled. In order to use USB 2.0, necessary OS drivers must be installed first.

AC97 Audio Select

The AC97 Audio Select option allows the user to enable or disable onboard audio function.

• UART Mode Select

Select an operating mode for the serial port 2. <Choice: IrDA, ASKIR, Normal>

Parallel Port Mode

This field allows you to determine parallel port mode function. <Choice: SPP, EPP, ECP, ECP + EPP, Normal>

PWRON After PWR-Fail

This item allows you to select if you want to power on the system after power failure

3-5. Power Management Setup

The Power Management Setup allows users configuring the system to save energy in a most effective way while operating in a manner consistent with their own style of computer use.

Item	Available Options:
>PCI Express PM Function	Press Enter
ACPI function	Enabled
ACPI Support Type	S1(POS)
Run VBIOS if S3 Resume	Auto
Power Management	User Define
Video Off Method	Blank Screen
Video Off In Suspend	Yes
Suspend Type	Stop Grant
Suspend Mode	Disabled
HDD Power Down	Disabled
Soft-Off by PWR-BTTN	Instant-Off
CPU THRM-Throttling	75.0%
USB KB Wake-Up From S3	Disabled
Resume by Alarm	Disabled
Date(of Month) Alarm	0
Time(hh:mm:ss) Alarm	0:0:0
** Reload Global Timer Events **	
Primary IDE 0	Disabled
Primary IDE 1	Disabled
Secondary IDE 0	Disabled
Secondary IDE 1	Disabled
FDD,COM,LPT Port	Disabled
PCI PIRQ[A-D]#	Disabled

PCI Express PM Function

Item	Available Options:
PCI Express PME	Enabled

31

ACPI Function

This function should be enabled only in operating systems that support ACPI. Currently, only Windows® 98SE/2000/ME/XP supports this function. When this field is enabled, the system will ignore the settings in the "Suspend Mode" and "HDD Power Down" fields. If you want to use the Suspend to RAM function, make sure this field is enabled then select"S3 (STR)" in the field below.

ACPI Suspend Type

This field is used to select the type of Suspend mode.

S1(POS)	Enables the Power On Suspend function.
S3(STR)	Enables the Suspend to RAM function.
S1 & S3	If S3 state is supported by the system, by default [S3] is
	automatically selected. Otherwise [S1] is selected.

Power Management

This field allows you to select the type of power saving management modes.

Video Off Method

This field defines the Video Off features.

Blank Screen	Writes blanks to the video buffer.
V/H SYNC + Blank	Enables the Suspend to RAM function.
DPMS	Allows BIOS to control the video display.

Soft-Off by PWR-BTTN

This field defines the power-off mode when using an ATX power supply.

CPU THRM-Throttling

When the system enters Doze mode, the CPU clock runs only part of the time. You may select the percent of time that the clock runs.

3-6. PnP/PCI Configurations

This section describes the configuration of the PCI bus system. PCI is a system that allows I/O device to operate at speeds nearing the speed of the CPU itself, when communicating with its own special components. This section covers some very technical items. It is strongly recommended that only experienced users make any changes to the default settings.

Item	Available Options:
Init Display First	PCI Slot
Reset Configuration Data	Disabled
Resources Controlled By	Auto(ESCD)
IRQ Resources	Press Enter
PCI/VGA Palette Snoop	Disabled
INT Pin 1 Assignment	Auto
INT Pin 2 Assignment	Auto
INT Pin 3 Assignment	Auto
INT Pin 4 Assignment	Auto
INT Pin 5 Assignment	Auto
INT Pin 6 Assignment	Auto
INT Pin 7 Assignment	Auto
INT Pin 8 Assignment	Auto

Reset Configuration Data

Enabled	The BIOS will reset the Extended System Configuration Data (ESCD) once automatically. It will then recreate a new set of
	configuration data.
Disabled	The BIOS will not reset the configuration data.

Resources Controlled By

Auto(ESCD)) The system will automatically detect the settings for you.	
Manual	Choose the specific IRQ in the "IRQ Resources" field.	

PCI/VGA Palette Snoop

When set to [Enabled], multiple VGA devices operating on different buses can handle data from the CPU on each set of palette registers on every video device. Bit 5 of the command register in the PCI device configuration space is the VGA Palette Snoop bit (0 is disabled).

3-7. PC Health Status

This screen shows the information of temperature, Fan speed and Vcore etc.

Item Available Options:			
Temperature 1	45℃		
Temperature 2	45℃		
Temperature 3	45°C		
VcoreA	1.21V		
VcoreB	1.05V		
+3.3 V	3.31V		
+5 V	5.13V		
+ 12 V	11.73V		
CPU Fan	0 RPM		
System Fan	6692 RPM		

Chapter 4. VGA, LCD Feature

4-1. VGA Feature

ENDAT-4946i/M provides an integrated graphics (Intel® Graphics Media Accelerator 950) accelerator delivering cost competitive 3D, 2D, and video capabilities. It contains an extensive set of instructions for 3D operations, BLT (Block Level Transfers) and Stretch BLT operations, motion compensation, overlay, and display control. ENDAT-4946i/M video engines support video conferencing and other video applications. Instead of a dedicated local graphics memory interface, ENDAT-4946i/M applies UMA configuration for optimal memory utilization and performance that deliver 3D graphics with sharp images, fast rendering, smooth motion and extreme detail.

The Intel® 945GM Express chipset's low power design enables up to 28% less average power consumption compared to previous generations. Featuring the Intel® Graphics Media Accelerator 950, the Intel 945GM Express chipset delivers up to 2 x improvements in graphics performance over the previous generation chipset. The Intel® 945GM Express chipset enables up to 25% higher data transfer rate compared to the previous generation bus speed.

ENDAT-4946i/M applies Intel® DVMT 3.0 for optimum the system utilization via system chipset. DVMT is a concept be applied in the Intel® 945GM chipset wherein the optimum amount of memory is dynamically allocated and de-allocated as needed for balanced graphics and system performance, through Intel® Direct AGP and a highly efficient memory utilization scheme.

The on-board INTEL® GMA950 Graphic Controller supports a full AGP implementation internally to remain compatible with existing software and programming models. However, since the engine is integrated, it enjoys a higher bandwidth and lower latency than is possible with discrete solutions.

The controller of ENDAT-4946i/M supports 3 types of display: CRT, DVI and LVDS panel.

35

4-2. LVDS Panel Feature (optional)

The on-board graphic controller supports industry standard LCD panel, LVDS interface only, with 1 channel (18 or 24) and 2 channels (36 or 48bit) data width.

LVDS interface provides low voltage, high speed and low EMI serial DC-balanced differential data via optional onboard LVDS.

The flat panel interface provides or supports following functions for various panels:

- Generates LVDS flat panel channels like clock and data channel.
- Generates different video data formats to directly drive different types of panels (18, 24, 36 or 48bit)
- Wide screen resolution as 16:9 or 16:10.
- Vertical and horizontal expansion of video displays to LCD panel resolution
- Vertical and horizontal centering
- Panel power sequence

Please note that the default setting is with "CRT". If the LCD display features is required, the setting will need to be revised in the system BIOS setting: "CRT+EFP" under "Advanced Chipset Features" unless clients specified the display type while order.

4-3. Driver Utility Installation Guide

When finishing the installation of Windows platform (2000/XP), please install the relative "INF" driver of Intel® chipsets firstly for compliance compatibility of hardware environment.

Please follow the step of CD-ROM driver and complete the VGA, AUDIO, ETHERNET and USB2.0 setup procedure. Insert the support CD that supplied with motherboard into CD-ROM driver, which enable the access with auto-run mode; or double –click the CD driver icon in "My Computer" to bring up the screen.

Please download or check from Intel® Web site: <u>www.intel.com</u> if you prefer to install the drivers individually or you need more information.

38

Appendix A: FLASH Memory Utility

Using this utility to update the system BIOS from a disk file to the on board Flash memory. Be aware the improper change of the system BIOS will cause the system to malfunction.

Using utility as follows:

- 1. Insert the FLASH memory utility distribution floppy diskette in drive A:
- 2. At the DOS prompt, type A:>AWDFLASH and press <Enter>

AwardBIOS FLASH Utility V8.63E		
C>Phoenix Technologies Ltd. All Rights Reserved		
Flash Type –		
File Name to Program:		
Message:		

3. Enter the name of the system BIOS disk file into the "File Name to Program" field

The following message appears in the "Message" field

- 4. Do you want to save BIOS (y/n)?
- 5. To update the FLASH memory from the system BIOS disk file, type Y
- 6. After complete updating, please re-boot the system (press "F1" key)
- 7. For upgrade BIOS procedure, please refer to our web site: http://www.unicorn-computer.com.tw
- * Please turn off system and clear CMOS data by JBAT1.

* Please restart your system and load optimal defaults setting.

Appendix B: LCD Pin Assignment

LVDS1: Dual Channel LVDS (2.54mm)

Pin No.	Signal	Pin No.	Signal
1	VBL (+12V)	2	VBL (+12V)
3	GND	4	GND
5	DISP.ON/OFF	6	GND
7	LVDD	8	LVDD
9	GND	10	GND
11	RxO0+	12	RxO0-
13	RxO1+	14	RxO1-
15	RxO2+	16	RxO2-
17	RxO3+	18	RxO3-
19	RxOC+	20	RxOC-
21	GND	22	KEY
23	RxE0+	24	RxE0-
25	RxE1+	26	RxE1-
27	RxE2+	28	RxE2-
29	RxE3+	30	RxE3-
31	RxEC+	32	RxEC-
33	LVDD	34	LVDD
35	GND	36	GND
37	GND	38	GND
39	VBL (+12V)	40	VBL (+12V)

Please make sure the Pin 1 location before inserting the LCD connector.

LVDS1: Single Channel of LVDS I/F (2.0mm)			
Pin No.	Signal	Pin No.	Signal
1	VBL (+12V)	2	VBL (+12V)
3	GND	4	GND
5	DISP.ON/OFF	6	GND
7	LVDD	8	LVDD
9	GND	10	GND
11	Rx0+	12	Rx0-
13	Rx1+	14	Rx1-
15	Rx2+	16	Rx2-
17	Rx3+	18	Rx3-
19	RxCLK+	20	TxCLK-
21	GND	22	KEY
23	n/c	24	n/c
25	n/c	26	n/c
27	n/c	28	n/c
29	n/c	30	n/c
`31	n/c	32	n/c
33	LVDD	34	LVDD
35	GND	36	GND
37	GND	38	GND
39	VBL (+12V)	40	VBL (+12V)

Please make sure the Pin 1 location before inserting the LCD connector.

BIOS LCD panel type list (Advance Chipset Setup/Panel Type)

Panel Number		
1024x768 24Bit 1CH		
1280x1024 48Bit 2CH		
1280x768 24Bit 1CH		
1366x768 24Bit 1CH		

40

39

Appendix C: Limited Warranty

Standard two years limited warranty on all our ENDAT series all-in-one motherboards and embedded boards. Products that become defective during the warranty period shall be repaired, or subject to manufacturer's option, replaced. The limited warranty applies to normal proper usage of the hardware and does not cover products that have been modified or subjected to unusual electrical or physical stress. Unicorn Computer Corp is not liable to repair or replace defective goods caused by improper using or use of unauthorized parts. The following situations will be charged:

- The products during the warranty but defective caused by improper using or artificial external pressure and result in the components damages. According to the damage situation, the manufacturer has the rights to decide to repair or not. The manufacturer will charge the parts/repair cost and the returning shipping charge.
- 2. The products out of warranty will charge the parts/repair cost and the returning shipping charge as per the repair status.
- 3. The manufacturer has the rights to decide to repair or not based on the stock of parts for the products which are phased out of the production.
- 4. Please e-mail or fax the RMA Service Request Form when have the defective products.

When requesting RMA service, please fill out this "RMA Service Request Form". This form needs to be shipped with your returns. Service cannot begin until we have this information.

RMA NO.:

Company:	Person to Contact:	
Phone No:	Purchase Date :	
Fax No. :	Applied Date :	
Return Shipping Address:		

Model No.	Serial No.	Problem Code	Remark

41

42

• Issue Code of defect.

1	01	Second Times R.M.A.	11	Memory Socket Bad
1	02	No Screen (No Boot)	12	Hang Up Hardware
	03	VGA (Display) Fail	13	Hang Up Software
	04	CMOS Data Lost	14	PCB Problem
	05	FDC Fail	15	CPU Socket Bad
	06	HDC Fail	16	LAN Fail
	07	Bad Slot	17	Audio Fail
1	08	BIOS Problem	18	Serial Port Fail
	09	Keyboard Controller Fail	19	Parallel Port Fail
1	10	Cache RAM Problem	20	Others

Please specify the following when returning the RMA boards:

(1) Hardware Configuration (2) OS or Software (3) Testing Program

Authorized Signature